Biofuels Technology.... Trending and placid Africa needs White biotechnology

A biofuel is a fuel that is produced through contemporary biological processes, such as agriculture and anaerobic digestion, rather than a fuel produced by geological processes such as those involved in the formation of fossil fuels, such as coal and petroleum, from prehistoric biological matter. Biofuels can be derived directly from plants, or indirectly from agricultural, commercial, domestic, and/or industrial wastes.[1] Renewable biofuels generally involve contemporary carbon fixation, such as those that occur in plants or microalgae through the process of photosynthesis. Other renewable biofuels are made through the use or conversion of biomass (referring to recently living organisms, most often referring to plants or plant-derived materials). This biomass can be converted to convenient energy-containing substances in three different ways: thermal conversion, chemical conversion, and biochemical conversion. This biomass conversion can result in fuel in solid, liquid, or gas form. This new biomass can also be used directly for biofuels. Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources, such as trees and grasses, is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil. Current plant design does not provide for converting the lignin portion of plant raw materials to fuel components by fermentation. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. In 2010, worldwide biofuel production reached 105 billion liters (28 billion gallons US), up 17% from 2009,[2] and biofuels provided 2.7% of the world's fuels for road transport. Global ethanol fuel production reached 86 billion liters (23 billion gallons US) in 2010, with the United States and Brazil as the world's top producers, accounting together for 90% of global production. The world's largest biodiesel producer is the European Union, accounting for 53% of all biodiesel production in 2010.[2] As of 2011, mandates for blending biofuels exist in 31 countries at the national level and in 29 states or provinces.[3] The International Energy Agency has a goal for biofuels to meet more than a quarter of world demand for transportation fuels by 2050 to reduce dependence on petroleum and coal.[4] The production of biofuels also led into a flourishing automotive industry, where by 2010, 79% of all cars produced in Brazil were made with a hybrid fuel system of bioethanol and gasoline.[5] There are various social, economic, environmental and technical issues relating to biofuels production and use, which have been debated in the popular media and scientific journals. These include: the effect of moderating oil prices, the "food vs fuel" debate, poverty reduction potential, carbon emissions levels, sustainable biofuel production, deforestation and soil erosion, loss of biodiversity, impact on water resources, rural social exclusion and injustice, shantytown migration, rural unskilled unemployment, and nitrous oxide (NO2) emissions. Liquid fuels for transportationEdit Most transportation fuels are liquids, because vehicles usually require high energy density. This occurs naturally in liquids and solids. High energy density can also be provided by an internal combustion engine. These engines require clean-burning fuels. The fuels that are easiest to burn cleanly are typically liquids and gases. Thus, liquids meet the requirements of being both energy-dense and clean-burning. In addition, liquids (and gases) can be pumped, which means handling is easily mechanized, and thus less laborious. First-generation biofuelsEdit "First-generation" or conventional biofuels are made from sugar, starch, or vegetable oil. EthanolEdit Main article: Ethanol fuel Neat ethanol on the left (A), gasoline on the right (G) at a filling station in Brazil Biologically produced alcohols, most commonly ethanol, and less commonly propanol and butanol, are produced by the action of microorganisms and enzymes through the fermentation of sugars or starches (easiest), or cellulose (which is more difficult). Biobutanol (also called biogasoline) is often claimed to provide a direct replacement for gasoline, because it can be used directly in a gasoline engineEthanol fuel is the most common biofuel worldwide, particularly in Brazil. Alcohol fuels are produced by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane, molasses and any sugar or starch from which alcoholic beverages such as whiskey, can be made (such as potato and fruit waste, etc.). The ethanol production methods used are enzyme digestion (to release sugars from stored starches), fermentation of the sugars, distillation and drying. The distillation process requires significant energy input for heat (sometimes unsustainable natural gas fossil fuel, but cellulosic biomass such as bagasse, the waste left after sugar cane is pressed to extract its juice, is the most common fuel in Brazil, while pellets, wood chips and also waste heat are more common in Europe) Waste steam fuels ethanol factory- where waste heat from the factories also is used in the district heating grid. Ethanol can be used in petrol engines as a replacement for gasoline; it can be mixed with gasoline to any percentage. Most existing car petrol engines can run on blends of up to 15% bioethanol with petroleum/gasoline. Ethanol has a smaller energy density than that of gasoline; this means it takes more fuel (volume and mass) to produce the same amount of work. An advantage of ethanol (CH 3CH 2OH) is that it has a higher octane rating than ethanol-free gasoline available at roadside gas stations, which allows an increase of an engine's compression ratio for increased thermal efficiency. In high-altitude (thin air) locations, some states mandate a mix of gasoline and ethanol as a winter oxidizer to reduce atmospheric pollution emissions. Ethanol is also used to fuel bioethanol fireplaces. As they do not require a chimney and are "flueless", bioethanol fires[6] are extremely useful for newly built homes and apartments without a flue. The downsides to these fireplaces is that their heat output is slightly less than electric heat or gas fires, and precautions must be taken to avoid carbon monoxide poisoning. Corn-to-ethanol and other food stocks has led to the development of cellulosic ethanol. According to a joint research agenda conducted through the US Department of Energy,[7] the fossil energy ratios (FER) for cellulosic ethanol, corn ethanol, and gasoline are 10.3, 1.36, and 0.81, respectively.[8][9][10] Ethanol has roughly one-third lower energy content per unit of volume compared to gasoline. This is partly counteracted by the better efficiency when using ethanol (in a long-term test of more than 2.1 million km, the BEST project found FFV vehicles to be 1-26 % more energy efficient than petrol cars The BEST project), but the volumetric consumption increases by approximately 30%, so more fuel stops are required. With current subsidies, ethanol fuel is slightly cheaper per distance traveled in the United States.[11] BiodieselEdit Main articles: Biodiesel and Biodiesel around the world Biodiesel is the most common biofuel in Europe. It is produced from oils or fats using transesterification and is a liquid similar in composition to fossil/mineral diesel. Chemically, it consists mostly of fatty acid methyl (or ethyl) esters (FAMEs). Feedstocks for biodiesel include animal fats, vegetable oils, soy, rapeseed, jatropha, mahua, mustard, flax, sunflower, palm oil, hemp, field pennycress, Pongamia pinnata and algae. Pure biodiesel (B100) currently reduces emissions with up to 60% compared to diesel Second generation B100. Biodiesel can be used in any diesel engine when mixed with mineral diesel. In some countries, manufacturers cover their diesel engines under warranty for B100 use, although Volkswagen of Germany, for example, asks drivers to check by telephone with the VW environmental services department before switching to B100. B100 may become more viscous at lower temperatures, depending on the feedstock used. In most cases, biodiesel is compatible with diesel engines from 1994 onwards, which use 'Viton' (by DuPont) synthetic rubber in their mechanical fuel injection systems. Note however, that no vehicles are certified for using neat biodiesel before 2014, as there was no emission control protocol available for biodiesel before this date. Electronically controlled 'common rail' and 'unit injector' type systems from the late 1990s onwards may only use biodiesel blended with conventional diesel fuel. These engines have finely metered and atomized multiple-stage injection systems that are very sensitive to the viscosity of the fuel. Many current-generation diesel engines are made so that they can run on B100 without altering the engine itself, although this depends on the fuel rail design. Since biodiesel is an effective solvent and cleans residues deposited by mineral diesel, engine filters may need to be replaced more often, as the biofuel dissolves old deposits in the fuel tank and pipes. It also effectively cleans the engine combustion chamber of carbon deposits, helping to maintain efficiency. In many European countries, a 5% biodiesel blend is widely used and is available at thousands of gas stations.[12][13] Biodiesel is also an oxygenated fuel, meaning it contains a reduced amount of carbon and higher hydrogen and oxygen content than fossil diesel. This improves the combustion of biodiesel and reduces the particulate emissions from unburnt carbon. However, using neat biodiesel may increase NOx-emissions Nylund.N-O & Koponen.K. 2013. Fuel and Technology Alternatives for Buses. Overall Energy Efficiency and Emission Performance. IEA Bioenergy Task 46. Possibly the new emission standards Euro VI/EPA 10 will lead to reduced NOx-levels also when using B100. Biodiesel is also safe to handle and transport because it is non-toxic and biodegradable, and has a high flash point of about 300 °F (148 °C) compared to petroleum diesel fuel, which has a flash point of 125 °F (52 °C).[14] In the USA, more than 80% of commercial trucks and city buses run on diesel. The emerging US biodiesel market is estimated to have grown 200% from 2004 to 2005. "By the end of 2006 biodiesel production was estimated to increase fourfold [from 2004] to more than" 1 billion US gallons (3,800,000 m3).[15] In France, biodiesel is incorporated at a rate of 8% in the fuel used by all French diesel vehicles.[16] Avril Group produces under the brand Diester, a fifth of 11 million tons of biodiesel consumed annually by the European Union.[17] It is the leading European producer of biodiesel.[16] Other bioalcoholsEdit Methanol is currently produced from natural gas, a non-renewable fossil fuel. In the future it is hoped to be produced from biomass as biomethanol. This is technically feasible, but the production is currently being postponed for concerns of Jacob S. Gibbs and Brinsley Coleberd that the economic viability is still pending.[18] The methanol economy is an alternative to the hydrogen economy, compared to today's hydrogen production from natural gas. Butanol (C 4H 9OH) is formed by ABE fermentation (acetone, butanol, ethanol) and experimental modifications of the process show potentially high net energy gains with butanol as the only liquid product. Butanol will produce more energy and allegedly can be burned "straight" in existing gasoline engines (without modification to the engine or car),[19] and is less corrosive and less water-soluble than ethanol, and could be distributed via existing infrastructures. DuPont and BP are working together to help develop butanol. E. coli strains have also been successfully engineered to produce butanol by modifying their amino acid metabolism.[20] Green dieselEdit Main article: Vegetable oil refining Green diesel is produced through hydrocracking biological oil feedstocks, such as vegetable oils and animal fats.[21][22] Hydrocracking is a refinery method that uses elevated temperatures and pressure in the presence of a catalyst to break down larger molecules, such as those found in vegetable oils, into shorter hydrocarbon chains used in diesel engines.[23] It may also be called renewable diesel, hydrotreated vegetable oil[23] or hydrogen-derived renewable diesel.[22] Green diesel has the same chemical properties as petroleum-based diesel.[23] It does not require new engines, pipelines or infrastructure to distribute and use, but has not been produced at a cost that is competitive with petroleum.[22] Gasoline versions are also being developed.[24] Green diesel is being developed in Louisiana and Singapore by ConocoPhillips, Neste Oil, Valero, Dynamic Fuels, and Honeywell UOP[22][25] as well as Preem in Gothenburg, Sweden, creating what is known as Evolution Diesel. Biofuel gasolineEdit In 2013 UK researchers developed a genetically modified strain of Escherichia coli (E.Coli), which could transform glucose into biofuel gasoline that does not need to be blended.[26] Later in 2013 UCLA researchers engineered a new metabolic pathway to bypass glycolysis and increase the rate of conversion of sugars into biofuel,[27] while KAIST researchers developed a strain capable of producing short-chain alkanes, free fatty acids, fatty esters and fatty alcohols through the fatty acyl (acyl carrier protein (ACP)) to fatty acid to fatty acyl-CoA pathway in vivo.[28] It is believed that in the future it will be possible to "tweak" the genes to make gasoline from straw or animal manure. Vegetable oilEditStraight unmodified edible vegetable oil is generally not used as fuel, but lower-quality oil can and has been used for this purpose. Used vegetable oil is increasingly being processed into biodiesel, or (more rarely) cleaned of water and particulates and used as a fuel. As with 100% biodiesel (B100), to ensure the fuel injectors atomize the vegetable oil in the correct pattern for efficient combustion, vegetable oil fuel must be heated to reduce its viscosity to that of diesel, either by electric coils or heat exchangers. This is easier in warm or temperate climates. MAN B&W Diesel, Wärtsilä, and Deutz AG, as well as a number of smaller companies, such as Elsbett, offer engines that are compatible with straight vegetable oil, without the need for after-market modifications. Vegetable oil can also be used in many older diesel engines that do not use common rail or unit injection electronic diesel injection systems. Due to the design of the combustion chambers in indirect injection engines, these are the best engines for use with vegetable oil. This system allows the relatively larger oil molecules more time to burn. Some older engines, especially Mercedes, are driven experimentally by enthusiasts without any conversion, a handful of drivers have experienced limited success with earlier pre-"Pumpe Duse" VW TDI engines and other similar engines with direct injection. Several companies, such as Elsbett or Wolf, have developed professional conversion kits and successfully installed hundreds of them over the last decades. Oils and fats can be hydrogenated to give a diesel substitute. The resulting product is a straight-chain hydrocarbon with a high cetane number, low in aromatics and sulfur and does not contain oxygen. Hydrogenated oils can be blended with diesel in all proportions. They have several advantages over biodiesel, including good performance at low temperatures, no storage stability problems and no susceptibility to microbial attack.[31]

Comments

Popular posts from this blog